Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Closed Cycle Simulation Model with Particular Reference to Two-Stroke Cycle Engines

1991-09-01
911847
A quasi-dimensional computer simulation model is presented to simulate the thermodynamic and chemical processes occurring within a spark ignition engine during compression, combustion and expansion based upon the laws of thermodynamics and the theory of equilibrium. A two-zone combustion model, with a spherically expanding flame front originating from the spark location, is applied. The flame speed is calculated by the application of a turbulent entrainment propagation model. A simplified theory for the prediction of in-cylinder charge motion is proposed which calculates the mean turbulence intensity and scale at any time during the closed cycle. It is then used to describe both heat transfer and turbulent flame propagation. The model has been designed specifically for the two-stroke cycle engine and facilitates seven of the most common combustion chamber geometries. The fundamental theory is nevertheless applicable to any four-stroke cycle engine.
Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

2007-10-30
2007-01-4250
The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Technical Paper

A Commercial Excavator: Analysis, Modelling and Simulation of the Hydraulic Circuit

2012-09-24
2012-01-2040
The paper addresses some aspects of an ongoing research on a commercial compact excavator. The interest is focused on the analysis and modelling of the whole hydraulic circuit that, beside a load sensing variable displacement pump, features a stack of nine proportional directional control valves modules of which seven are of the load sensing type. Loads being sensed are the boom swing, boom, stick and bucket, right and left track motors and work tools; instead, the blade and the turret swing users do not contribute to the load sensing signal. Of specific interest are the peculiarities that were observed in the stack. In fact, to develop an accurate AMESim modelling, the stack was dismantled and all modules analysed and represented in a CAD environment as 3D parts. The load sensing flow generation unit was replaced on the vehicle by another one whose analysis and modelling have been developed using available design and experimental data.
Technical Paper

A Comparative Analysis of a Rigid Bicycle Model with an Elastic Bicycle Model for Small Trucks

2011-04-12
2011-01-0240
The planar rigid bicycle model is one of the most popular models used in vehicle dynamics. It has widely been used in studying vehicle handling characteristics and designing steering control system for vehicles. This paper analyses a modified dynamic model called the "Elastic Bicycle Model." This model improves upon the classical bicycle model by taking into account the flexibility of the vehicle frame by using concepts from the Euler beam theory. Complete set of the resulting dynamic equations of this model are presented. Non-dimensional versions of the equations are used to investigate the steady state response of the model. Finally, the results of the response study obtained by modeling a small truck with an elastic model and the classical bicycle model are presented. These include the steady state solutions as function of different parameters as well as a transient solution in response to a saw-tooth steering input and a step input. Octave® has been used for simulation purpose.
Technical Paper

A Comparison Between Micromachined Piezoresistive and Capacitive Pressure Sensors

1997-11-17
973241
Hundreds of millions of micromachined, piezoresistive Manifold Absolute Pressure (MAP) sensors have been produced to reduce pollution and improve fuel efficiency in engine control systems. Other vehicle applications for micromachined pressure sensors include monitoring turbo pressure, barometric pressure, fuel tank leakage, fuel rail pressure and tire pressure. Exhaust gas recirculation and even door compression for side impact detection are employing micromachined silicon pressure sensors. Piezoresistive pressure sensors have dominated the automotive market to date. Practical micromachined capacitive pressure sensors have recently been developed and could replace the piezoresistive sensor in many applications. This paper will examine the advantages of both pressure sensing technologies, and discuss applications that an inexpensive capacitive pressure sensor will open up.
Technical Paper

A Comparison Of The Dynamic Performance Of A U.S. And A European Heavy Vehicle

1988-09-01
885111
Despite the general similarity of U.S. and European heavy trucks, there are differences in design properties that affect braking and turning performance. A European tractor-semitrailer was studied for the purpose of comparing its properties to those of U.S. vehicles and assessing the comparative performance. Mass, suspension, and braking system properties of the European tractor and semitrailer were measured in the laboratory and on the proving ground. Turning and braking performance qualities were evaluated by computer simulation and by experimental tests. In turning performance the European combination had a 9 percent advantage in rollover threshold, compared to a generic U.S. vehicle with properties that were in the midrange of U.S. design practice. Higher suspension roll stiffness and higher chassis weight on the European tractor and semitrailer accounted for the higher threshold.
Technical Paper

A Comparison between Two Different Computer Simulations in Measuring the Vehicle/Pedestrian Impact

1982-02-01
820171
This paper presents the analytical results of two different computer simulations of the vehicle pedestrian impact; PROMETHEUS 2 and the MacLaughlin/Daniel (MACDAN) models. The results presented illustrate the simularity and differences between the two models and accuracy of both to predict the actual occurrance. Also presented is a discussion relative to the modeling techniques of obtaining data for the pedestrian. This presentation illustrates the scaling techniques and actual data obtained in order to accurately simulate the pedestrian.
Technical Paper

A Comparison of Controller Designs for an Active, Electromagnetic, Offroad Vehicle Suspension System Traveling at High Speed

1998-02-23
980924
This paper discusses controller development for an active, off-road vehicle suspension system. A brief review of electronic filters and their characteristics is used to provide insight on the difficulties of designing a control algorithm for negotiating hilly and rough terrain at higher speeds. Two controller designs are presented. One was designed by pole placement and causes the suspension response to approximate a Type 1 Chebychev filter. The other was designed using constrained optimization. A comparison and discussion of simulation results leads to the conclusion that the suspension should be adaptively or predictively controlled for arbitrary terrain and velocity conditions.
Journal Article

A Comparison of Full Scale Aft Cavity Drag Reduction Concepts With Equivalent Wind Tunnel Test Results

2013-09-24
2013-01-2429
Comparison studies have been conducted on a 1:16th scale model and a full scale tractor trailer of a variety of sealed aft cavity devices as a means to develop or enhance commercial drag reduction technology for class 8 vehicles. Various base cavity geometries with pressure taps were created for the scale model. The studies confirmed that length has an important effect on performance. The interaction of the boat-tailed aft cavity with other drag reduction devices, specifically side skirts, was investigated with results showing no discernable drag performance interaction between them. Overall, the experiments show that a boat-tailed aft cavity can reduce the drag up to 13%. Full-scale tests of a commercially derived product based on these scale tests were also completed using SAE Type II testing procedures. Full-scale tests indicated a fuel savings of over 6.5%.
Technical Paper

A Comparison of Time Domain and Frequency Domain Test Methods for Automotive Components

1994-11-01
942279
Frequency domain testing has had limited use in the past for durability evaluations of automotive components. Recent advances and new perspectives now make it a viable option. Using frequency domain testing for components, test times can be greatly reduced, resulting in considerable savings of time, money, and resources. Quality can be built into the component, thus making real-time subsystem and full vehicle testing and development more meaningful. Time domain testing historically started with block cycle histogram tests. Improved capabilities of computers, controllers, math procedures, and algorithms have led to real time simulation in the laboratory. Real time simulation is a time domain technique for duplicating real world environments using computer controlled multi-axial load inputs. It contains all phase information as in the recorded proving ground data. However, normal equipment limitations prevent the operation at higher frequencies.
Technical Paper

A Comparison of the Fatigue Lives of Polyvinylchloride & Steel Welds

1988-04-01
880818
This paper describes the results of a series of fatigue studies relating the lives of several weld geometries. Rotating beam and axially loaded specimens were used. A comparison between steel and plastic (polyvinylchloride scale models is made. Using plastic scale models of welded structures for fatigue life determination is the ultimate goal of this work.
Technical Paper

A Comprehensive Phenomenological Model of the Jet Mixing Process in D.I. Diesel Engines

1986-09-01
861273
The paper describes a detailed mathematical analysis of the problem of jet mixing in swirling or transverse flow fields under non-isothermal, non-isodense conditions. The model takes into account potential core effects, cross sectional distortion and differences in profiles between the distributed properties (velocity, concentration, temperature and density). Comparisons with a wide range of experimental results have produced excellent agreement.
Technical Paper

A Compressed Natural Gas Mass Flow Driven Heavy Duty Electronic Engine Management System

1993-08-01
931822
This paper describes the conversion of a stationary spark ignition engine to a heavy duty (HD) natural gas engine suitable for transportation applications, in response to the new urban truck and bus legislation of 1994 and 1998. The approach to the fuel and ignition control system is to use a microprocessor controlled engine management system based on inputs from combustion air and natural gas mass flow sensors. As the emission control system is also based on stoichiometric three way catalyst technology, it is felt that the control approach is very robust. The engine and control system were first mounted on a HD dynamometer for the development work where engine control parameters were calibrated. In addition steady state emission data were collected and estimates of the HD transient emission levels were obtained.
Technical Paper

A Computational Fluid Dynamics Approach to Noise Immunity Improvement of Vortex Flowmeters

2000-09-11
2000-01-2595
In order to improve the noise immunity of vortex flowmeters, we have investigated the hydrodynamic vibration around the bluff body of the flowmeter. We used numerical approaches to visualize the time dependent vortex motion within the channel of the flowmeter, and experimental approaches to clarify the characteristic of the hydrodynamic vibration on the side faces of the prismatic bluff body. The results show that the hydrodynamic vibrations with 180° phase shift occur on the side faces of the bluff body, i.e. the prism. The most intense vibration points are situated here. By using differential transducers, a vortex flowmeter with improved measurement accuracy has been developed.
Technical Paper

A Computational and Experimental Analysis of the Flow Around a Blunt-Base Vehicle

2005-11-01
2005-01-3626
This paper describes the results of experiments that were performed using a Ground Research Vehicle (GRV) at the National Aeronautics and Space Administration's (NASA) Dryden Flight Research Center in Edwards, CA and a comparison with computational results. The GRV is a modified 1984 General Motors (GMC) van and measures 40 feet long and 9 feet high, with a base area of 83 by 83, and it weighs 10260 lbs and holds a crew of up to three. Air data is measured from a nose-boom, 2 global positioning (GPS) units, and an absolute Honeywell Pressure Transducer with 4 Electronic Signal Processor (ESP) scanners and 64 surface pressure ports. This allows for detailed measurements of the surface pressure profiles around the vehicle. The total vehicle drag is estimated from coast-down tests, while the pressure component of the drag force may be calculated by integrating the pressure profiles on the front and base of the vehicle.
Technical Paper

A Computer Cooling System Study of a Diesel Powered Truck for Control of Transient Coolant, Oil and Cab Temperatures

1982-02-01
821049
A Vehicle-Engine-Cooling (VEC) system computer simulation model was used to study the transient performance of control devices and their temperature settings on oil, coolant and cab temperatures. The truck used in the study was an International Harvester COF-9670 cab over chassis heavy-duty vehicle equipped with a standard cab heater, a Cummins NTC-350 diesel engine with a McCord radiator and standard cooling system components and aftercooler. Input data from several portions of a Columbus to Bloomington, Indiana route were used from the Vehicle Mission Simulation (VMS) program to determine engine and vehicle operating conditions for the VEC system computer simulation model. The control devices investigated were the standard thermostat, the Kysor fan-clutch and shutter system. The effect of shutterstat location on shutter performance along with thermostat, shutter and fan activation temperature settings were investigated for ambient temperatures of 32, 85 and 100°F.
Technical Paper

A Computer Program for Truck Frame Design

1964-01-01
640016
The classical methods of deflection analysis are finding more application to complex automotive chassis frame structures. Much too time consuming for manual application, they are now coming into more widespread use with the aid of high-speed computers. This paper describes a computerized deflection analysis for complete truck frames under the cases of torsion and flexure. The rapid, accurate analysis permits investigation of more design problems resulting in the eventual production of more efficient frame structures.
Technical Paper

A Computer Simulation Analysis of Road Dynamics of Log Hauling Trucks

1994-11-01
942305
A nonlinear yaw-roll model for log hauling trucks is developed in this paper. Several nonlinear effects, such as nonlinear tire cornering forces, nonlinear tire aligning moments, and the coupling between the yaw and roll motions, are considered in this model. Using this model, a computer simulation of the directional and roll responses of a logging truck with tractor and pole-trailer configurations is carried out through various maneuvers. Simulated results for the lateral accelerations are compared with those obtained from field tests. Good agreement has been achieved.
Technical Paper

A Computer Simulation of Backhoe Type Excavators

1991-09-01
911838
This paper describes the simulation model of a backhoe excavator. The model uses a prescribed motion cycle and the objective of the program is to determine the power requirements for each of the cylinders as well as the total engine power requirement. Most computer simulations are developed by expressing the differential equations of motion for the system being studied. The known force inputs to the system are applied and the time response of the system is then obtained by numerically integrating the governing differential equations. This paper on the other hand develops the reverse of this. Utilizing a prescribed geometry and trajectory cycle for a linkage system as the input, the program solves for the types of force inputs that are required to achieve that trajectory. With the time dependence of the trajectory known, the total power required and the power required of each cylinder is also evaluated. A typical excavator linkage is shown in Fig. 1.
Technical Paper

A Computer Simulation of the Effect of Wind on Heavy Truck Fuel Consumption Testing

2010-10-05
2010-01-2039
A computer simulation was developed to investigate the effect of wind on test track estimation of heavy truck fuel efficiency. Monte Carlo simulations were run for various wind conditions, both with and without gusts, and for two different vehicle aerodynamic configurations. The vehicle configurations chosen for this study are representative of typical Class 8 tractor trailers and use wind tunnel measured drag polars for performance computations. The baseline (control) case is representative of a modern streamlined tractor and conventional trailer. The comparison (test) case is the baseline case with the addition of a trailer drag reduction device (trailer skirt). The integrated drag coefficient, overall required power, total fuel consumption, and average rate of fuel consumption were calculated for a heavy truck on an oval test track to show the effect of wind on test results.
X